Backward stochastic partial differential equations driven by infinite dimensional martingales and applications
نویسنده
چکیده
This paper studies first a result of existence and uniqueness of the solution to a backward stochastic differential equation driven by an infinite dimensional martingale. Then, we apply this result to find a unique solution to a backward stochastic partial differential equation in infinite dimensions. The filtration considered is an arbitrary rightcontinuous filtration, not necessarily the natural filtration of a Wiener process. This, in particular, allows us to study more applications, for example the maximum principle for a controlled stochastic evolution system. Some examples are discussed in the paper as well.
منابع مشابه
Reflected generalized backward doubly SDEs driven by Lévy processes and Applications
In this paper, a class of reflected generalized backward doubly stochastic differential equations (reflected GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to ...
متن کاملBackward Stochastic Differential Equations Associated with Lévy Processes and Partial Integro-differential Equations
In this paper, we deal with a class of backward stochastic differential equations driven by Teugels martingales associated with a Lévy process (BSDELs). The comparison theorem is obtained. It is also shown that the solution of BSDE provides a viscosity solution of the associated system with partial integro-differential equations.
متن کاملReflected Backward Stochastic Differential Equations Driven by Lévy Process
In this paper, we deal with a class of reflected backward stochastic differential equations associated to the subdifferential operator of a lower semi-continuous convex function driven by Teugels martingales associated with Lévy process. We obtain the existence and uniqueness of solutions to these equations by means of the penalization method. As its application, we give a probabilistic interpr...
متن کاملReflected Generalized Backward Doubly
In this paper, a class of reflected generalized backward doubly stochastic differential equations (reflected GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to ...
متن کاملInfinite dimensional forward-backward stochastic differential equations and the KPZ equation∗
Kardar-Parisi-Zhang (KPZ) equation is a quasilinear stochastic partial differential equation(SPDE) driven by a space-time white noise. In recent years there have been several works directed towards giving a rigorous meaning to a solution of this equation. Bertini, Cancrini and Giacomin [2, 3] have proposed a notion of a solution through a limiting procedure and a certain renormalization of the ...
متن کامل